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APPLICATION OF A GENERALIZED FORMULATION OF THE STEFAN PROBLEM 

TO INVESTIGATION OF RADIATION-CONDUCTIVE HEAT TRANSFER 

A. L. Burka, N. A. Rubtsov, 
and N. A. Savvinova 

UDC 536.3:536.42 

Study of the influence of internal thermal radiation on the temperature distribution 
formation in semitransparent materials by using the classical Stefan model, assuming the 
presence of a plane interface between the liquid and solid phases, showed that the monotonic 
nature of the temperature distribution is spoiled ahead of the plane front. This fact was 
explained in [i, 2] as heating of the solid phase during melting and over cooling of the 
liquid during solidification Caused by heat transfer due to radiation. Overheating and over- 
cooling are metastable states of a substance, but crystal overheating in the domain bound- 
ing the liquid phase is not generally realized [3]. Dendritic growth is detected before 
the crystallization front upon the appearance of an overcooled zone. Moreover, an inde- 
pendent volume generation of crystals is possible [4]. Therefore, instead of overheating 
and overcooling,a two-phase or transition zone appears in the semitransparent medium, in 
which partial melting or solidification occurs, caused by solid-phase absorption of thermal 
radiation or because of radiation cooling. Also confirmed in [5] is the reality of the ap- 
pearance of a transition zone in a semitransparent medium. The spoilage of the classical 
Stefan condition and the appearance of a transition zone are also mentioned in [6, 7]. 

A generalized model, proposed in [5, 7], according to which the material under con- 
sideration consists of three sublayers (Fig. i, zone I: liquid, 2i solid, 3i two-phase), 
is used in this paper to investigate the influence of thermal radiation on the phase trans- 
formation process in a layer of semitransparent material. The initial layer temperature 
is below the melting point Tmi then the temperature of the left wall acquires a temperature 
T I > T m and is later maintained constant. At the initial time, surface melting predominates 
because of the high temperature gradient. After a certain time, a transition zone appears 
because of the rapid penetration of the thermal radiation into the solid phase. It is con- 
sidered that the thermophysical and optical properties are constant in all the phases, a 
unique melting point exists, and a two-phase domain is in thermodynamic equilibrium at this 
temperature. The density change during melting is assumed insignificant; consequently, con- 
vective motion is neglected. 

In a generalized formulation the Stefan problem reduces to determining the tempera- 
ture as a continuous function O~, ~) satisfying the energy equation . . . . .  

O~ = a i r  (kve) + I (e); ( 1 ) 
ot 

o /0, O > Ore, 
u (0)  = f c (~) d~ - -  ~ (0  - -  Ore) ~,, ~ = {[0, '1_], 0 = Ore, 

o 11, O<@m, 
(2) 

within the domain {0 < x < i, 0 < t < T}, where u(O) is the enthalpy undergoing a discon- 
tinuity of the first kind and defined ambiguously for O = Om, and X is the latent heat of 
melting. 
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Taking (i) and (2) into account, we obtain a system of equations 

parameters) 

c~O ,)20 I Oq~ C * o F = N K ~ o x -  4 0 x '  O < x < S l ( t ) '  

O0 0 2 0  "l Oq 2 
C2 07" = NK2 --Ox "z - -  40x- '  S 2 (t) < x < J,I 

ot 4~Ox' 0 = Ore, S l ( t ) < ~ x ~ S 2 ( t ) .  

(with dimensionless 

(3) 

Here C i = ci/Cr; K i = ki/kr; x = x/L; O = T/Tr; X = l/crTr; t = 4o0T~t/crL; qi = Ei/~ = 
Si/L; N = kr/4o0LT ~ is the conductive-radiation parameter, o 0 is the Stefan-Boltzmann con- 
stant, r is the index of the characteristic parameter, and ~(x, t) determines the fraction 
of the solid phase in the transition zone. 

The initial conditions are 

sl(0) = & ( 0 )  = So, O(z ,  0) = o, ,(x);  ( 4 )  

t h e  bounda ry  c o n d i t i o n s  a r e  

0 ( 0 ,  t) = 01,  0 ( 1 ,  t) = 0~. ( 5 )  

The c o n d i t i o n s  on t h e  i n n e r  b o u n d a r i e s  S z ( t )  and S 2 ( t )  a r e  found from t h e  e q u a t i o n s  
on t h e  s t r o n g  d i s c o n t i n u i t y  

d S  1 
= - -  NK~ aO I ~162 d--7 ~-x s~-" (6)  

dSo NK oo  [4. (7) 

Since dS2/dt _> 0, OO/Sxls+ ~ < 0, then the relationship (7) is satisfied for ~[S~ = i, 

o O / a x l s +  = o. 

The medium is gray, absorbing, and radiating; the refractive indices of all the layers 
are n I = n 2 = n 3 = 1.5, whereupon scattering is neglected. The absorption coefficient of 
the transition zone is • = (• + x2)/2. The specimen boundary surfaces are black (E I = 

~2 = 1 ) .  

The resultant radiation fluxes that enter into (3) are found from the formal solutions 
of the radiation transport equations for each layer 

[ ~h 2 z~' ( x ' )  q~(x, t ) = 2 ~  I + ( O ) e x p ( - - l h x / ~ q )  + j  : n l - - ~  e x p ( - - h : ( x - - x ' ) / p l ) d x ' - -  (8)  
0 

- s -  ( i )  oxp ( -  h~ ( l  - -  S . , ) m ,  - -  h 3  ( S , ,  - -  S l ) m 3  - -  hi (81 - -  ~)/p~) - -  

1 

- -  1 h2n~ B (x') exp (-- h 2 (x'  -- S2)/~t 2 - -  
S 2 

- -  hl (Xl - -  x ) / ~  - -  h ~  ( X , ,  - -  S ~ ) / , ~ )  d x "  - -  
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S 2 

__ - j '  h3n~ B (x') exp  ( - -  h 3 (x '  - -  S1)l~t 3 - -  

fl B (x') --r x 

X exp ( - -  h x (x '  - -  x)/~tl) d x "  , 0 < x < S 1 ( t ) ,  

q~ (x ,  t) = 2r~ I + (0) exp  ( "  h ~ S g ~ ,  - -  h 3 ($2 - -  S , ) / ~ 3  - -  

S~ 

- -  h 2 ( x  - -  $2)1,a2) + J h~n~ B (x') exp  ( - -  h~ ( S  t - -  x')lt-% - -  h~ ( z  - -  S~ ) /~  2 - -  
0 

$2 

- -  h 3 (S., - -  S 1)/~ta) dx '  + ,1" han~ - ~  exp  ( - -  h 3 ( S z - -  x ') /~t 3 - -  
, D 

S 1 

i . B (x') - -  h 2 (x - -  S.,)/~t2) dx '  + n2n22 _ _  exp ( - -  h:  ( x  - -  x ') / ixe)  dx '  - -  
~t 2 

S 2 

1 

- -  I -  ( l )  exp  ( - -  h 2 ( i  - -  x)/~t2) - -  ~" h~n~, s (z') X 

X 0 X p ( - - h  2(x '-x)/~t2)~x' /~t2d~t2/ ,  S 2 ( ~ ) < x < ' ,  
d J 

q3 (x, t) = 2n I + (0) exp  ( - -  h l S g I ,  h - -  h 3 ( x  - -  $1)1~t3)/- 

$1 

+ ,I -nln12 B ~t'---~-(x') exp  ( - -  h 1 (S~ - -  x ' ) /~q  - -  h a (X - -  S ~ ) I ~ )  dx '  + 
o 

+ ~ h~n~ B (~='____._J) exp  ( - - h  3 ( x  - -  x')/~t~) dx '  - -  I -  (l)  exp  ( h~ ( l  - -  S~)/I~z - 
J ~t 3 
S 1 

1 

- -  h~ (S 2 - -  x)/,a3) - -  J ~a~nz ~ B (x')__~ e~p ( - -  h~ (x '  - -  S~)/~., - -  h~ (S~ - -  x)]~3 ) d x ' - -  

82 

Here h i = ~iL is the optical thickness of the layers, B(x') is the radiation intensity of 
an absolutely black body in a vacuum, ~i is the cosine of the angle between the radiation 
direction and the x-axis, and I+(0) = Eln~B(0), I-(I) = e~n~B(1) are the boundary radia- 
tion intensities. 

An integro-interpolation method [8] is used for the numerical solution of the boundary 
value problem (3)-(7), for which integral conservation laws are satisfied for the differ- 
ence approximation of the heat-conduction equations, the Newton method is used to determine Sl(t) 
and S2(t), and d~/dt is approximated by a finite-difference ratio. Integrals of the form 

1 

Kn(h) = ~ ~n-2exp(--h/~)d~were evaluated by Gauss quadratures, and those of the form I(x) = 
x @ 

~](x')Kn(--~(x--x'))dx' by trapezoid formulas. 
0 
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Computations were performed for the following values of the dimensionless parameters: 
C I = 0.75, C 2 = i, K I = 2, K 2 = i, I = 0.i, which correspond approximately to the melting 
of fluorite (T m = 1700 K, k r = 9 W/(m'K), L= i0 ~ cm) [i]. The boundary temperatures are 
@I = 0.7, @2 = @0 = 0.3. The melting point is @m = 0.5, N = 0.01. According to the 
classical model of a phase transition, the computations were performed until a monotonic 
temperature profile was retained, then they were continued by the generalized model. 

Figures 2a and 2b show-~emperature profiles in a specimen obtained in a computation by 
the classical and generalized models. The optical thicknesses of the layers are h I = 

• = 1, h 2 = • = 2, h 3 = • = (hl + h2)/2. As the time increases the two-phase layer 
thickness diminishes (curve 1 is As (i) = S 2 - S i = 0.1794, 2 is As (2) = 0.1754, 3 is As (3) = 

0.14). The two-phase layer vanishes upon emergence in the stationary temperature regime. 
If we take h 3 = 2, then the transition zone thickness becomes less than for h a = 1.5 
(As(i) = 0.1465, As (2) = 0.1313, As(a) = 0.106) since the thermal radiation from the hotter 
liquid phase is absorbed more strongly by the layer lying nearest to the liquid phase. 

Presented in Figs. 3a and b are the temperature distributions computed by the classical 
and generalized models for h i = i, h 2 = 5, hz = 3. As should have been expected, the transi- 
tion zone dimensions are still less than in Fig. 2b (curve i is 6s (i) = 0.1126, 2 is 6s(2) = 
01107, 3 is &s (3) = 0.i01). 
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Shown in Fig. 4 is the distribution of the solid-phase fraction e(x, t) in the two- 
phase domain at different times (curve i is t = 0.662; 2 is 0.76; 3 is 1.27; 4 is 2.5) corres- 
ponding to the temperature profiles presented in Fig. 2b. As is seen, the fraction of the 
melted solid body part is diminished with the depth of the two-phase layer since the layers 
lying close to the hot liquid phase absorb more radiation energy; but only the part of the 
solid body forming the two-phase layer melts because the quantity of absorbed energy does 
not equal the latent heat of melting of the solid body. Surface melting evidently occurs 
because of heat conduction, resulting in the formation of a pure liquid layer (~ = 0), while 
internal melting resulting in non-zero values of ~ proceeds because of thermal radiation. 

Motion of the transition zone boundaries is illustrated in Fig. 5, where curve 2 corres- 
ponds to Sl(t), 3 to S2(t) for h a = 1.5, 4 for h 3 = 2, while curve I is motion of the front 
computed by the classical phase transition model. It is seen that extraction of the two-phase 
intermediate domain accelerates the melting process. 

Spoilage of the monotoneity [9] is not observed in the temperature distributions in 
computations by the classical phase transition model for N ~ 0.05, which means that the con- 
tribution from thermal radiation to heat transfer for these values is insufficient for the 
appearance of a two-phase domain. In such cases the classical phase transition model, which 
becomes unacceptable for the appearance of the transition zone being taken into account 
in the generalized model, is perfectly suitable. As soon as the transition zone vanishes, 
the generalized model again goes over into the classical model. 

The problem formulation considered is somewhat idealized since the optical properties 
of the transition zone have not been studied theoretically or experimentally, and the struc- 
ture of the two-phase domain being formed here is unknown. 
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